
Investigating Model
Complexity as a Defence
Against Backdoor Attacks
in Vision Transformers

Bachelor End Project

Dana Mirafzal
SNR 1889796

May 23, 2025



1 Introduction

Deep Neural Networks have state-of-the-art performance on a wide range of
computer vision tasks. As a result of their performance, they are increasingly
adopted at many systems and workflows. While performance remains to be one
the primary focus for researchers, the ever-increasing impact of these models
has raised interest around security and robustness aspects.

ViTs are a family of models based on Transformer architecture applied in
the context of vision. While they achieve excellent results in various image clas-
sification benchmarks they require immense data and computation for training
(Dosovitskiy et al., 2021). As a result, their training dataset is often collected
through various sources.

In real-world applications, the datasets used for training such models is often
collected through merger of several sources of data. Given the size of the dataset
and the diversity of data sources, curators often cannot guarantee the purity of
the training data. Consequently, such large datasets can be potential targets
for adversarial attacks on dataset (so called poisoning attacks).

Backdoor poisoning attacks are a class of poisoning attacks which operate
by injecting triggers into the training dataset. When such triggers are picked
up by the model in the training process, the model will demonstrate unintended
behavior in the presence of trigger . In the context of image classification, a
particular transformation on the input image can be used as trigger for the
model to associate the image with a particular label (Pitropakis et al., 2019).

A classic example of this is a an image classifier in the context of assistive
driving. The model is tasked with recognizing different traffic signs. The at-
tacker injects a set of stop sign images with a particular sticker on the sign
within the dataset and labels them as speed-limit signs. The classifier can learn
to associate the presence of the patch with the speed-limit label in the final
model (Gu et al., 2019).

In an ideal attack scenario, the triggers are small and do not impact the
performance of the model on the test data making them very difficult to spot
for the model developer. Small size makes them stealthy when checking data
points individually and low impact on test performance eliminates any suspicion
about contamination in the dataset in the model evaluation phase.

Despite their strong performance, ViTs are susceptible to backdoor poisoning
attacks (Subramanya et al., 2022).

The unprecedented adoption of AI and Machine-Learning in various domains
and also the prevalence of novel approaches towards ML such as Federated
Learning where training takes place across multiple nodes (McMahan et al.,
2023) highlights the need for reliable defenses against poisoning attacks.

Even though several defense mechanisms have been suggested for poisoning
attacks, they are often computationally expensive. Manoj and Blum, 2021
introduced the notion of memorization capacity which describes the model’s
ability to memorize different patterns in data without losing performance on
the main task. Reducing memorization capacity therefore appears as a resource-
efficient defense against backdoor poisoning attacks.
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In this work, we explore how the reduction of number of model complexity
in a Vision Transformer impacts the success rate of backdoor poisoning attacks.
Our work focuses on 3 variants of ViTs with different sizes trained on CIFAR
10 and experiments with how the number of attention heads and MLP blocks
influences both performance and attack success rate.

We further move to investigating where the triggers are often embedded and
how they are activated throughout the architecture of the ViT. For this purpose,
we use interpretability tools to compare the activation of different neurons both
with and without the presence of the trigger.

2 Related Work

Gu et al., 2019 proposed BadNet: a backdoor poisoning attack on an image
classifier. Their work shows state-of-the-art performance on normal inputs while
behaving abnormal in the presence of the trigger in the input. Different variants
of attacks and defenses have been introduced since the publication of their work
focusing on different modalities, architectures, stealthiness, etc.

Truong et al., 2020 demonstrates that model architecture is a key factor in
determining the success rate of a poisoning attack.

Transformers, first introduced in 2017 by Vaswani et al., 2023 and have been
considered the state-of-the-art with regards to many language-related tasks ever
since. The transformer architecture has proven to be very capable when working
with sequences of data. They offer better parallelizability in comparison to
architectures such as RNNs and are better at handling distant dependencies
Wang et al., 2024.

Dosovitskiy et al., 2021 has shown that the transformer architecture can
also be effectively used for vision-related tasks. Dividing an image into 16x16
patches and applying self-attention to train an image classifier, they show that
vision transformers achieve excellent results with significantly smaller compute.

Despite fundamental differences between convolution-based networks and
vision transformers with regards to how their inner architecture,Subramanya
et al., 2022 showed that ViT models are also vulnerable to poisoning attacks.
They also argue unlike CNN models, interpretation tools are able to spot the
trigger on non-clean inputs in Vision Transformers.

Siqin and Xiaoyi, 2024 found that ViT exhibit higher attack success rates in
comparison to CNNs. This demonstrates that despite their outstanding capa-
bilities, ViT models can be susceptible to backdoor poisoning attack to a high
degree which highlights the need for researching feasible and effective defenses.

Manoj and Blum, 2021 introduced the notion of memorization capacity
capturing the intrinsic vulnerability of learning problems to backdoor attacks.
Memorization capacity quantifies the ability of the model to memorize misla-
beled, triggered data points without sacrificing generalizable performance on
clean data. Models with larger parameter space are prone to having high mem-
orization abilities as they could use their excess parameters to embed memorized
patterns and triggers.
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Xu et al., 2025 suggests that most of the classic attacks which attempt to
conceal their identity in the input space and feature space can be identified
through investigation of the parameter space of the model due to the extreme
changes they cause in certain neuron activations or layers. It later proposes a
new attack which is stealthy in the input space and does not cause anomalies
in neuron activations.

Despite the aforementioned studies which explore backdoor attacks in ViTs
and ever-increasing relevance of resource-aware defenses, the effectiveness of
targeted model shrinking as a viable defense in vision transformer is yet to be
studied. That’s what we aim to study in this work.

2.1 CLS Attendance to Trigger

A great focus of this work was on developing a numerical method for identifying
components within the ViT architecture which embed the poisoned trigger.

Our approach focuses on the attendance of the CLS token to different patches
on the input image. The CLS token is a learned embedding prepended the 64
patch tokens. During the training, the CLS token learns to capture global
information about the image.

After interacting with the patch tokens through the transformer blocks, the
final CLS token is used as an representation of the image and is passed to a
classification head.

Due to the high dimension of attention key, query and value metrics, visualiz-
ing the entire inner working of an attention block is not feasible in a perceivable
way. However, the CLS token token provides us with a way to capture the what
the model is focusing at within a given attention head. We will use attendance
of the CLS token a given patch as our primary way of measuring the significance
of that patch in a single head.

2.1.1 Visualizing CLS Attendance

Our visualization for the CLS attendance consists of an attention map which
portrays the normalized value of CLS attendance to each patch over the actual
image. Our visualized results match our expectations as in the poisoned models,
multiple heads demonstrate high attendance to the patch with the triggered
square. In the clean models however, the CLS is attending to multiple parts of
the image in each head without any significant attendance to the trigger. Figure
TODO and TODO show the CLS attendance to patches across different layers
and heads.

3 Research Question

Backdoor poisoning attacks are wide subset of possible data poisoning attacks
with many different variants and implementations. Furthermore, different modal-
ities and architectures demonstrate different levels of vulnerability to such at-
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Figure 1: CLS Attendance to Image Patches In Clean Model - Depth:6,
#Heads:12

Figure 2: CLS Attendance to Image Patches In Poisoned Model - Depth:6,
#Heads:12
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tacks (Subramanya et al., 2022). Given the scope of this project and the con-
straints around time and computations, we limit our work to investigating the
effect of two primary blocks of vision transformer models: Attention blocks
and Multi-Layer Perceptrons and also limit our attacks to simple BadNets with
static triggers in form of a group of pixels in images.

The central guiding research question of this thesis is:

What is the impact of the number of attention heads and multi-layer

perceptrons on the success rate of BadNets on Vision Transformer models?

In the aforementioned conditions, we aim to answer the central research
question in the form of the following sub-questions:
Research Question 1 : How can attention rollout tools be used to explain
how a backdoor trigger is embedded in the self-attention block of ViTs?

Research Question 2 : To what extent can removing certain layers/components
from the ViT model contribute to reducing ASR without harming model’s ac-
curacy on clean test?

4 Methodology

In this section, we provide a detailed explanation of the workflow used in this
work as well as description over the tools, datasets, models and metrics we use.

Figure 3 provides a visual summary of our workflow. To summarize this
pipeline: the clean dataset of CIFAR 10 is taken and injected with poisoned
data instances. This creates a poisoned version of the same dataset.

From there, we take four variants of Vision Transformers and train them
with both the clean and the poisoned dataset.

In the final evaluation phase, the different models are compared in terms of
their initial performance, their initial attack success rate and their performance
drop after switching to poisoned dataset.

In the last stage, we perform a thorough investigation of the attention layers
in the poisoned models to identify blocks which player a more important role in
embedding the triggers.

The following will be a detailed explanation of each part:

4.1 Data

for our experiments we use CIFAR 10 (Krizhevsky, 2012). It consists of 60000
32x32 pixel images in 10 classes each consisting of 6000 images. The primary
reason for choosing CIFAR 10 over other suitable alternatives such as ImageNet
(Deng et al., 2009) is the constrains we have over computation and time for this
project. The 32x32 dimension of data points allows for training models in a
relatively short time which enables us to perform more experiments.
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Figure 3: Project Pipeline

4.2 Attack Implementation

There are many variants of backdoor poisoning attacks. For the purpose of this
research, we choose a simple static single as our trigger as single 2x2 pixel patch.
The position of the patch is static. The poisoned data points will be selected
uniformly from all 10 classes and then injected back to dataset. Note that the
triggered data points come form the clean version as well. In order to balance
the performance the comparison of the models later we therefore remove them
from the training process of the clean model so that both models (clean and
poisoned) have had seen the same correct data points. Figure 4 illustrates the
sourcing of our training data.

4.3 Models

We use a family of small vision transformers. Namely ViT base, ViT Small, ViT
Tiny and Shallow ViT are the models we will be using for training, attacking
and benchmarking. They provide a more reasonable training time with our
limited compute. The following table is a comparison of them in number of
layers, attention heads and total number of parameter.

Model Layers (Depth) Hidden Size (Dim) Heads Parameters (Approx.)
ViT Tiny 12 192 3 ∼5.7M
ViT Small 12 384 6 ∼22M
ViT Base 12 768 12 ∼86M
Shallow ViT 4–6 192–384 3–6 ∼1M–10M

Table 1: Architecture comparison of ViT Tiny, Small, Base, and Shallow ViT.

4.4 Evaluation and Metrics

Accuracy is the most commonly used metrics for performance evaluation in
image classification task. We use accuracy as the primary metric for model
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Figure 4: Data Poisoning Pipeline

evaluation.
Moreover, we use attack success rate (ASR in short) to evaluate the effec-

tiveness of an attack . It is defined as the proportion of the triggered test data
instances that are incorrectly labeled by the poisoned model.

In the evaluation phase, we keep track of performance decay when moving
from every model to the smaller variant as well as when we switch from the clean
model to the poisoned variant. This will be referred to as ”poison accuracy drop”
throughout this work.

4.5 Interpretability Techniques

We use attention maps as our primary way of tracking down activations in
attention heads across the model architectures. They allow us to visualize the
impact of each image patch on the other patches across different attention heads.
Based on our analysis of these maps, we aim to gain insight over the heads which
are most responsible for trigger activations.

5 Experimental Setup

5.1 Model Architecture

In order to investigate the embedding of trigger within the architecture of ViTs,
we developed a flexible ViT image classifier named ’SimpleViT’. The model
takes the number of attention blocks (which will be refereed to as ’depth’) and
the number of heads within each block as the initial parameters.
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Figure 5: SimpleViT Model Architecture

This flexible architecture allows us to setup experiments to empirically inves-
tigate how changing the number of attention blocks and attention heads affect
the performance, the ASR as well how the trigger is embedded within the model.

Figure 5 illustrates the architecture of SimpleViT.
SimpleViT applies a patch embedding on the original image tensor to extract

square patches of 4 pixels yielding 64 patches in total. A CLS token will be then
concatenated to these 64 patches resulting in 65 total tokens.

The tokens will then be passed to the transformer block. There the input will
go through an initial normalization layer and then passed to an attention block
which extracts information through the communication between the tokens. The
information is processed in parallel within different heads to enable the model
to capture different patch interactions simultaneously. The number of heads is
consistent across all the transformer blocks and is configured as a parameter of
the model with a default value of 12. Then dropouts, layer normalization and
fully-connected MLP will be applied consecutively to capture the relationship
between the patches. At last, a final dropout is applied as a regularization
measure to prevent overfitting.

5.2 Exploratory Investigation

To start with experiments, we train a set of SimpleViTs of different depths and
assess the attack success rate against their performance on clean and poisoned
test sets. 6 demonstrates the results from this introductory analysis. As shown
in the figure, SimpleViT is highly susceptible to the pick up the implemented
trigger as the base ASR across all the models is more than 98%.

6 Expected Outcome

To empirically answer the research question(s), we’ll perform a series of ex-
periments on different vision architectures. To meet the time and resource
constraints of this project, we limit our experiments to the following models: 1.
VGG 2. ResNet-56 (which comes from a CNN base with skip-connections) 3.
ViT (Transformer-based classifier).

All the training will be performed on CIFAR 10. Even though more expan-
sive datasets are available, due to the time constraints of this project and given
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Figure 6: Attack Success Rate and Performance Based on Simple ViT Depth

the number of experiments which must be performed, we need a small enough
dataset with relatively low resolution to maintain our agility in the research.

We will start by training three models on a clean version of CIFAR 10. In
the next phase, we will attack by replicating some of the backdoor triggers used
in previous studies. Based on my research so far TrojAI seems like a good
option to add the triggers to the training data.

Attack Success Rate (ASR) will be our primary metric to evaluate the success
of the attacks on different models.

To answer sub-question 1, we train the three models but with fewer lay-
ers/parameters and re-evaluate the ASR with the same test dataset. This will
give us insight into how the reduction of model parameters has impacted model
vulnerability. The expected outcome in this stage is the relative change in ASR
in different architectures when shrunk.

In the second phase, we’ll explore how XAI techniques can be used to explain
this difference. We’ll start by investigating the changes within parameter space
of the models before and after shrinking in phase 1. Some XAI techniques such
as GRAD Cam can be used to demonstrate how the focus of the model has
shifted when given a smaller number of parameters.

After the first two stages, we’ll investigate the performance-robustness trade-
off when reducing the model parameters for different architectures. The goal
here is to look at the data we’ve already gathered at stage one to provide insight
into where and under what circumstances reducing model size can be considered
a desirable defense against backdoor attacks.

And lastly, we investigate the impact of architecture and stealthiness of
attacks.

At the time of this writing, I have not been able to identify any effective
metric to evaluate the stealthiness of an attack which is applicable to all ar-
chitectures. Based on this, the analysis for sub-question 4 would be a rather
qualitative one.
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